
Leading Practices Used When Creating a
Project Schedule

These are some leading practices that are applied by many seasoned Project Managers, but are often missed by
someone new to the world of Project Management.

These are just some of the recommendations which are helpful to the planning staff, but there are other rules and
recommendations that should applied to your schedule depending on the complexity of your project. All the
recommendations provided here are of equal importance and I am not following a structure when numbering
them.

1. All tasks should have a unique name –

It is a leading practice to use a Work Breakdown Structure (WBS) when creating a project plan. By using WBS,
Project Managers can group similar activities under a summary task so it is easy to track them. When naming tasks
under different summary tasks, it is important that you do not repeat the same task names.

Consider the Project schedule shown above. As you can see the schedule has 2 phases. But both the phases have
same tasks – Build, Design and Prep for Move In. Imagine if you had 4 or 5 phases with same task names and you
had to link tasks between phases. You can easily make a mistake doing so. Or imagine if you were using Project
Server timesheet feature and had the same resource assigned to Design in Phase 1 and Phase 2. When that
resources goes to his/her timesheet, there would be no way of telling which task belongs to which phase.

But if you used unique names, it will be so much easier to link tasks between phases and resources assigned to
these tasks would know exactly which task they need to submit their time against.

http://epmablog.com/wp-content/uploads/2013/06/image.png
http://epmablog.com/wp-content/uploads/2013/06/image1.png

2. Task Names should have a Verb.

Verb is a word used to describe an action, state or occurrence. So to show that there is work done in a task it is
essential that we use a verb, not just as a formality, but to help you and your team members better understand
the activity that needs to be done.

Consider the following two Task names

a) Building Permits
b) Obtain Building Permits

If we only say “Building Permits” it does not really give much information about the task, do we need to obtain
building permits; do we need to check whether we have already received building permits? On the other hand, if
we say “Obtain Building Permits” then the person responsible for the task knows exactly what needs to be done.

3. Most task dependencies in your project must be Finish –> Start

Initial scheduling models only allowed Finish –> Start dependencies. The other three kinds of dependencies were
incorporated later. The fact is most real world task dependencies are still best modeled by Finish –> Start.

Some non-seasoned Project Managers will try to use all the dependencies in their schedule, especially Start –>
Start. Start –> Start is usually applied when a planner comes across statements such as: …. and activity X starts at
the same time as activity Y … In this case, a Start –> Start dependency is likely to be chosen, even though it is
usually not the right choice.

For example – Consider the following

When you choose Start –> Start, it means that Task 5 cannot start unless Task 4 has started. But is this really the
case? Usually, when people say Task 5 starts at the same time as Task 4, they usually mean that Task 5 has the
same predecessors as Task 4. In such cases the following would be the correct way to show

http://epmablog.com/wp-content/uploads/2013/08/image10.png
http://epmablog.com/wp-content/uploads/2013/08/image11.png

You will need to enter the same set of predecessors for Task 5 instead of using Start –> Start relationship. But
there are instances where you have a lot of predecessors to these tasks and it is painful to enter the same set of
predecessors for the second task. When you have a lot of successors based on a lot of predecessors, you actually
have an important event that happens between them, so you should ideally have a milestone. In such cases you
can make both the tasks successors of that milestone.

4. Start –> Finish task dependencies must be avoided as much as
possible.

The first impression of a Start –> Finish dependency is that this puts the activity before the predecessor. For
example

So what happens if we have more than one predecessor?

What some expect

What really happens

http://epmablog.com/wp-content/uploads/2013/08/image12.png
http://epmablog.com/wp-content/uploads/2013/08/image13.png
http://epmablog.com/wp-content/uploads/2013/08/image14.png
http://epmablog.com/wp-content/uploads/2013/08/image15.png

Some people expect Task 4 to finish before the earliest predecessor, but it finishes before the latest predecessor. A
Start –> Finish means that the successor should not finish unless the predecessor has started. When you have
multiple Start –> Finish, it means that your successors should finish when all three predecessors have started,
which means the start date of the latest predecessor.

So when should we use Start –> Finish dependency? Most give an example of Buying materials before beginning
construction. You normally would like to buy material right before you start construction so you can avoid storing
the materials.

This is good if everything works as planned, but what happens if we start Material Buying process on time, but
realize that it is going to take a lot longer than planned. This is how the schedule will look like-

In this case the schedule does not change, but is it right? Of course not, we cannot start the construction unless
the materials have arrived. So a Start –> Finish dependency is not the right choice in this case. So what is a good
case for the Start –> Finish dependency? Well Nothing

http://epmablog.com/wp-content/uploads/2013/08/image16.png
http://epmablog.com/wp-content/uploads/2013/08/image17.png

	1. All tasks should have a unique name –
	2. Task Names should have a Verb.
	3. Most task dependencies in your project must be Finish –> Start
	4. Start –> Finish task dependencies must be avoided as much as possible.

