
Using Intelligent WBS Codes in Microsoft
Project

Andrew Lavinsky March 3, 2010

This is a question that’s come up multiple times with folks I’ve worked with, and is something I consider best

practice. The last time someone asked me about this, I figured I’d just blog it up with screenshots and send

him the URL. So Daniel, this post is for you….

For years Project has had a function which remarkably few people know about, and even fewer people use –

that is the intelligent WBS Code. The intelligent WBS code basically entails swapping out the default

numerical outline (1.2.3) with a descriptive outline of the task (ABC.DEF.GHI). There are two main functions

of intelligent WBS codes:

1) To clearly identify tasks that have the same or similar names. Often schedules are populated using

fragments of templates. For instance if I am a professional gaspasser and building a pipeline with multiple

compressor stations, I’ll find an old template for compressor stations, then string the tasks into my schedule at

various places. The result of this practice is that I’ll have multiple tasks with pretty similar names. The

intelligent WBS is an easy way to differentiate those tasks in an easy and intuitive fashion.

2) Many organizations need to slice and dice their data in a number of different ways. For instance, in the

following example I am laying pipe in three locations: Harrisburg, Middletown, and Hershey. I have similar

tasks (grading, ditching, laying, cleaning) for each of the areas. I want to sort by geographic area –or by

http://blogs.catapultsystems.com/author/alavinsky/

subsystem – or by subsystem and then geographic area. That is a pretty typical request from project schedulers

that is enabled through the use of the intelligent WBS code.

A lot of schedulers end up creating custom fields to capture similar data and code each new activity with the

appropriate metadata. That is definitely a good practice. From a tool perspective though, I’ve always felt the

WBS code to be a slightly better option to do this as 1) it’s embedded in the system out of the box and 2) the

WBS Code allows the user to simply enter data on the summary task and have the data cascade down to the

child tasks automatically. So from a desktop tool user perspective, the built-in WBS code provides a bit more

ease of use.

There’s plenty of documentation out there in the help screens to assist users in using the WBS Code. My plan

with this post is to cover the basics, as well as including a couple of custom formulas to strip different levels

out of the WBS Code, and then discuss implications of using the WBS Code in conjunction with Project

Server.

How To

This feature has been in the product as long as I’ve been using it. The default behavior of the WBS Code is to

display an outline structure for the project.

http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_2_000ecb4a.png

However, this behavior can be modified using the Define WBS Code Dialog Box found under the Project >

WBS > Define Code menu structure. By using this dialog box, we can easily create intelligent WBS Codes

using text that clearly defines each of the activities.

In this case, I configure the Define WBS Code Dialog Box as follows:

The result is that my project now looks like this:

http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_4_000ecb4a.png
http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_6_000ecb4a.png

Now we can see the ease of using the WBS Code. All I have to do to populate this code is select the summary

task, click on WBS, and simply type whatever value I feel is appropriate.

There’s no need to position the cursor in the Input Bar, select text or anything. Just click on the box and type

the code for that summary task. The program takes care of the rest. All child tasks automatically take on the

same value.

Now, I’ll go ahead and add the other codes to the project:

http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_8_000ecb4a.png
http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_10_2dfc1e02.png
http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_12_2dfc1e02.png

Again, all I have to is select the WBS cell for the task and type in the appropriate code.

WBS Formulas

So now the question is what to do with this WBS code. Well, almost on an annual basis, someone asks me

about formulas to pull different levels of the WBS from the WBS code. Here’re a couple of formulas to get

you started. Note that these formulas are predicated on using WBS Codes separated with a period and with a

Project Number prefix including a colon.

For example, “PROJ1:ABC.DEF.GHI”

To extract each level, insert the following formulas into a spare Text field. Make sure to configure the fields to

use the formula to calculate summary row values.

Level Formula

1 IIf([Outline Level]=0,"",IIf([Outline Level]=1,Right([WBS],Len([WBS])-

INSTR([WBS],":")),Mid([WBS],INSTR([WBS],":")+1,INSTR([WBS],".")-

INSTR([WBS],":")-1)))

2 IIf([Outline Level]=2,RIGHT([WBS],LEN([WBS])-INSTR([WBS],".")),IIf([Outline

Level]>2,Left(RIGHT([WBS],LEN([WBS])-

INSTR([WBS],".")),INSTR(RIGHT([WBS],LEN([WBS])-INSTR([WBS],".")-1),".")),""))

3 IIf([Outline

Level]>3,Mid([WBS],INSTR(INSTR([WBS],".")+INSTR(RIght([WBS],Len([WBS])-

INSTR([WBS],":")),"."),[WBS],".")+1,INSTR(RIGHT([WBS],Len([WBS])-

INSTR(INSTR([WBS],".")+INSTR(RIght([WBS],Len([WBS])-

INSTR([WBS],":")),"."),[WBS],".")),".")-1),IIf([Outline

Level]=3,Right([WBS],Len([WBS])-

(INSTR(INSTR([WBS],".")+INSTR(RIght([WBS],Len([WBS])-

INSTR([WBS],":")),"."),[WBS],"."))),""))

As you can see, the formulas got more and more complicated with each level. I am sure that there are more

elegant methods to achieve the same results, but these seem to get the job done.

I added those formulas to my example from above and got the following results:

Which now allows me to group on those fields using a custom Group developed in the Project > Group By

menu. I can analyze the work, cost, or schedule of the digging activities vs. the cleaning activities – or I can

see how they work out on a schedule for resource allocation review.

Other Benefits

So once we have these intelligent codes, what can we do out of the box?

We can trace logic using the WBS Predecessor and WBS Successor fields. If we’re analyzing dependencies

created to support a resource critical path, i.e. that we have one pipe laying team, and built dependencies to

enforce resource allocation rules, this would be an easy way to identify that logic in the network.

http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_14_2dfc1e02.png
http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_16_2dfc1e02.png

We can also review the tasks at the Assignment level, as the WBS Code extends to the Assignment data for

each task:

This allows us to easily differentiate tasks with similar or identical names.

Server-Side Considerations

So the question is now that we have this wonderful feature in the desktop tool, can we use Project Server to

surface this information? Well, that’s a bit of a different challenge.

As a colleague and I found out a couple of years ago, the WBS field can be a bit tricky to use in the Server

views. The crux of the issue appears to be that WBS is published as a Task level field, and the Assignment

level data sometimes is difficult to surface in some enterprise views. Thus, the WBS code is not available in

the My Tasks view of Project Server.

http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_26_2dfc1e02.png
http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_20_2dfc1e02.png

Never fail however. There’s always a workaround. The easiest method is to just create an enterprise custom

field, which I called WBS2, and set the formula to “=[WBS].” Then set the field to roll down to the

assignment level, add to the My Tasks views, and you’re off to the races.

Similarly, those formulas I listed above work just fine as enterprise custom fields. This will allow you to

create grouped and filtered enterprise views just as you would on the desktop. Following is a Project Detail

view including the custom WBS fields.

http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_22_2dfc1e02.png
http://blogs.catapultsystems.com/wp-content/uploads/attachments/epm/lists/posts/attachments/93/image_24_2dfc1e02.png

